Notice d'utilisation simplifiée du tableur EXCEL®

(« Nouveau »).

I] Fonctions de base de Windows :

1) Ouvrir le logiciel.

2) Cliquer sur l'icône :

3) Pour ouvrir un fichier déjà existant (quand Excel est déjà ouvert).

Cliquer sur l'icône : 🖙 (« Ouvrir »)

Ouvrir le menu déroulant en cliquant sur la flèche vers le bas à côté de ma case en haut de la fenêtre.

4) Pour enregistrer un fichier. Cliquer sur l'icône : 🛄 (« enregistrer») ou sur « Fichier » puis « Enregistrer »

5) Pour fermer le logiciel (après avoir enregistré vos documents) Cliquer sur l'icône : 🔀 en haut à droite de l'écran.

II] Pour effectuer des calculs :

Vous pouvez faire faire des calculs par l'ordinateur dans une cellule à partir des données se trouvant dans les autres cellules du tableau.

Chaque fois que l'on souhaite effectuer un calcul, il faut double-cliquer sur la cellule correspondante puis saisir le calcul à effectuer <u>en commençant</u> <u>toujours par le signe</u> = <u>et en validant par la touche</u> « Entrée ».

Si l'on souhaite inclure dans le calcul une valeur située dans une autre cellule du tableau, il suffit de saisir sa localisation (par exemple : D15) OU tout simplement de cliquer sur cette cellule.

Fonctions et opérations courantes pour les calculs :

+	Addition	somme(A1:A8)	Calcule la somme des
			nombres contenus dans les
			cellules A1 jusqu'à A8
-	Soustraction	moyenne(A1:A8)	Calcule la moyenne des
			nombres contenus dans les
			cellules A1 jusqu'à A8
*	Multiplication	exp(x)	Calcule l'exponentielle de x

/	Division	ln(x)	Calcule le logarithme népérien de
			Х
x^y	x puissance y	log(x)	Calcule le logarithme décimal de x
racine(x)	Calcule la		
	racine de x		

III] Tracer d'un graphique :

•

Cliquer dans une cellule vide non adjacente aux cellules contenant vos données.

- Lancer l'assistant de création de graphique (icône 🛄).
- Sélectionner le type de graphique «Nuages de points» puis cliquer sur «Suivant».

- Cliquer sur l'onglet « Série », puis sur « Ajouter ». Il faut alors indiquer les valeurs de référence pour la réalisation du graphique : pour cela, cliquer sur

l'icône si faisant face à « Valeurs X ». Sélectionner alors (cliquer + glisser) les valeurs (et seulement les valeurs, pas les titres) à placer en abscisse, puis cliquer

sur 💽. Procéder de même pour les « Valeurs Y » (ordonnées). Cliquer sur « Suivant ».

Donner un titre correct au graphique et aux axes puis cliquer sur « Terminer ». Sélectionner dans le graphique le cadre « Série 1 » et le supprimer (touche « Suppr » du clavier).

IV] Tracer une courbe de tendance :

Pour vérifier une relation entre deux grandeurs, on utilise l'outil « courbe de tendance » qui permet :

- de tracer la courbe d'équation connue passant le plus près possible des points expérimentaux,
- de vérifier si la corrélation entre cette courbe « théorique » et les points expérimentaux est correcte,
- d'afficher l'équation numérique correspondant à cette courbe.

Pour ce faire :

- Sélectionner le cadre du graphique, puis cliquer dans le menu

« Graphique \rightarrow Ajouter une courbe de tendance ».

- Sélectionner le type de courbe attendu (droite = linéaire, parabole = polynôme,

...) puis cliquer sur l'onglet « Options ». Cocher « Afficher équation sur le

graphique » et « Afficher le coefficient de détermination (R^2) sur le graphique ». Cliquer sur « OK ».

Interprétation de la valeur de \mathbb{R}^2 : plus \mathbb{R}^2 est voisin de 1, plus on peut considérer que les points expérimentaux sont proches de la courbe de tendance